### EPREUVE ÉCRITE

# Ministère de l'Education nationale et de la Formation professionnelle

#### EXAMEN DE FIN D'ÉTUDES SECONDAIRES TECHNIQUES

Division technique générale

Section GE

BRANCHE: Mathématiques I

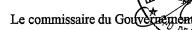
SESSION: mai-juin 2007 DATE: 24 mai 2007

DURÉE 2h15

### Exercice 1 9 points (6+3)

- 1) Démontrez :  $\lim_{x \to +\infty} \frac{\ln x}{r} = 0$ .
- 2) Démontrez: Pour tout entier n,  $n \ge 1$ , on a:  $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ .

### **Exercice 2** 12 points (1+3+3+3+2)


f est la fonction définie sur  $[1; +\infty[$  par  $f(x) = 2x + \sqrt{x^2 + 3x - 4}]$ .

Cf est sa courbe représentative dans un repère orthogonal.

- 1) Calculez la limite de f en  $+\infty$ .
- 2) Prouvez que la droite d d'équation  $y = 3x + \frac{3}{2}$  est asymptote à la courbe  $C_f$  en  $+\infty$ .
- 3) Etudiez la dérivabilité de f en 1. Que peut-on en déduire graphiquement ?
- 4) Calculez f'(x) pour x dans  $[1;+\infty[$  et dressez le tableau de variations de f.
- 5) Tracez la courbe Cf.

## **Exercice 3** 12 points (4+6+2)

- 1) Résolvez l'équation  $2 \ln x \ln 5 = \ln(x+2)$ .
- 2) Soit f la fonction définie sur IR par  $f(x) = \frac{1 e^{-x}}{1 + e^{x}}$ . Etudiez le signe de f'(x).
- 3) Résolvez l'équation différentielle 3y'-12y=0 et déterminez-en la solution f telle que  $f(1)=e^4$ .



1/2

### Exercice 4 15 points (3+0,5+1+2,5+3+2+3)

- 1) g est la fonction définie sur  $]0; +\infty[$  par  $g(x)=2x+3+2x\ln x$ .
  - a) Dressez le tableau de variations de g. (les limites ne sont pas demandées)
  - b) Calculez les coordonnées de l'extremum.
  - c) Déduisez-en le signe de g(x).
- 2) f est la fonction définie sur  $]0; +\infty[$  par  $f(x)=(2x+3)\ln x$ .
  - a) Calculez les limites de f aux bornes de  $]0; +\infty[$  et indiquez les équations des asymptotes éventuelles parallèles aux axes.
  - b) Vérifiez que pour tout réel x > 0,  $f'(x) = \frac{g(x)}{x}$  et dressez le tableau de variations de f.
  - c) Montrez que l'équation f(x)=10 admet une solution unique dans  $]0;+\infty[$ . Trouvez un encadrement d'amplitude  $10^{-1}$  de cette solution.
  - d) Tracez la courbe représentative de f dans un repère orthogonal.

### **Exercice 5** 7 points (1+3+2+1)

On note f la fonction définie par  $f(x) = 3x - \frac{1}{2} + \frac{e^x}{e^x - 1}$  et  $C_f$  sa courbe représentative dans un repère orthonormal. Justifiez chacune des affirmations suivantes :

- 1) f est définie sur IR\*,
- 2) f est une fonction impaire,
- 3) la droite d'équation x = 0 est asymptote à  $C_f$ ,
- 4) la droite d'équation  $y = 3x \frac{1}{2}$  est asymptote à  $C_f$ .

## Exercice 6 5 points

f est la fonction définie sur IR \ {2} par  $f(x) = \frac{ax^2 + bx + 3}{x - 2}$  avec a et b réels. On note  $C_f$  sa courbe représentative dans un repère orthonormal. Trouvez les réels a et b tels que :

- $C_f$  passe par le point A(1;-3)
- C<sub>f</sub> admet au point d'abscisse 1 une tangente de pente 2.

Le commissaire du Gouvernement