Ministère de l'Education nationale et de la Formation professionnelle

EXAMEN DE FIN D'ETUDES SECONDAIRES TECHNIQUES

Régime technique - Division technique générale

/ Le Session 2009 Repusage

BRANCHE:

Mathématiques l

DATE: 15 Juin 2009

DUREE:

2h15

Question I (6 + 2 = 8 points)

Démontrer que : $\lim_{x \to +\infty} \frac{e^{\bar{x}}}{x} = +\infty$ et $\lim_{x \to -\infty} xe^x = 0$.

Question II (3 + 4 + 3 = 10 points)

Soit f la fonction définie sur $]-\infty;-3] \cup [2;+\infty[$ par $f(x)=x-\sqrt{x^2+x-6}]$

 \mathscr{C}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$.

1) Déterminer la limite de f en $+\infty$ et interpréter graphiquement le résultat.

- 2) Démontrer que la droite d d'équation $y=2x+\frac{1}{2}$ est asymptote oblique à \mathscr{C}_f au voisinage de $-\infty$.
- 3) Étudier la dérivabilité de la fonction f en -3. Que peut-on en déduire graphiquement?

Question III (3 + (5 + 4) = 12 points)

1) f est une fonction dérivable sur \mathbb{R} et \mathscr{C}_f sa courbe représentative.

Déterminer la fonction f telle que :

- pour tout x réel, f(x) + 3f'(x) = 2;
- \mathscr{C}_f admet au point d'abscisse -3 une tangente de coefficient directeur $\frac{1}{2}$.
- 2) Résoudre dans IR les inéquations suivantes :
 - a) $2 \ln x \ln(2x+1) \ge \ln(2-x) \frac{1}{2} \ln 9$
 - b) $\ln \frac{1 + e^x}{1 e^x} \le 1$

Question IV (2+2+2=6 points)

Déterminer la limite de la fonction à l'endroit indiqué :

a)
$$f(x) = \frac{1}{x^2} (\ln x - x^3)$$
 en $+\infty$,

b)
$$f(x) = \frac{x}{1 - e^{-x}}$$
 en 0

a)
$$f(x) = \frac{1}{x^2} (\ln x - x^3)$$

b) $f(x) = \frac{x}{1 - e^{-x}}$ en 0,
c) $f(x) = \frac{\sin x - 1}{x - \frac{\pi}{2}}$ en $\frac{\pi}{2}$

La Commissaire du Gouvernement

Ministère de l'Education Nationale et de la Formation Professionnelle EXAMEN DE FIN D'ETUDES SECONDAIRES TECHNIQUES

Régime technique – Division technique générale Session 2009

Question V (2 + 3 + 5 + 3 + 2 = 15 points)

Soit f la fonction définie sur $]2; +\infty[$ par $f(x) = 6 - x - 2\ln\frac{x}{x-2}.$ \mathscr{C}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j}).$

- 1) Déterminer les limites aux bornes du domaine de définition.
- 2) Montrer que la droite Δ d'équation y=-x+6 est une asymptote oblique à \mathscr{C}_f , puis étudier la position de \mathscr{C}_f par rapport à Δ .
- 3) Dresser le tableau de variation de f.
- 4) Tracer \mathcal{C}_f dans un repère orthonormal d'unité 2 cm.
- 5) Déterminer une équation de la tangente à \mathscr{C}_f au point d'abscisse 4.

Question VI (9 points)

Quelle est le nombre de solution de l'équation $ex + e^{-x} = 5$? Donner un encadrement de chaque solution à 10^{-1} près.

La Commissaire du Gouvernement

