

Ministère de l'Education nationale et de la Formation professionnelle

EXAMEN DE FIN D'ETUDES SECONDAIRES TECHNIQUES

Régime technique – Division technique générale

Are Session 2010

BRANCHE:

Mathématiques I

DATE:

18 mai 2010

DUREE: 2h15

Question 1 (5 + 3 = 8 points)

1) a) Démontrer que pour tous réels a > 0, b > 0, $\ln ab = \ln a + \ln b$.

b) En déduire que pour tous réels a > 0, b > 0, $\ln \frac{a}{b} = \ln a - \ln b$.

2) Démontrer que : $\lim_{x\to 1} \frac{\ln x}{x-1} = 1$.

Question 2 (3+3+3=9 points)

Soit f la fonction définie sur $]-\infty$; $-5] \cup [2; +\infty[$ par $f(x) = x + \sqrt{x^2 + 3x - 10}$.

 \mathcal{C}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

a) Déterminer la limite de f en $-\infty$. Interpréter graphiquement ce résultat.

b) Démontrer que la droite Δ d'équation $y = 2x + \frac{3}{2}$ est une asymptote oblique à \mathcal{C}_f en $+\infty$.

c) Etudier la dérivabilité de f en 2. Interpréter graphiquement ce résultat.

Question 3 (3 + 3 + 1 + 4 = 11 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{3 - e^x}{e^x + 1}$.

 \mathbb{G}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

- 1) Déterminer les limites de *f* aux bornes du domaine de définition. Interpréter graphiquement ces résultats.
- 2) Étudier les variations de la fonction f sur \mathbb{R} .
- 3) Trouver une équation de la tangente T_0 à la courbe représentative G_f au point d'abscisse 0.
- 4) Tracer T₀ et ℃ dans un repère orthonormal d'unité 1 cm.

[5]

Ministère de l'Education Nationale et de la Formation Professionnelle

EXAMEN DE FIN D'ETUDES SECONDAIRES TECHNIQUES

Régime technique – Division technique générale Session 2010

Question 4 (2+4+3=9 points)

- 1) Déterminer la limite suivante : $\lim_{x \to -\infty} (3x e + e^{-x})$.
- 2) Résoudre dans \mathbb{R} l'inéquation suivante : $e^x > 2 + 15e^{-x}$
- 3) f est une fonction dérivable sur $\mathbb R$ et $\mathcal C_f$ sa courbe représentative dans un repère orthonormal.

Déterminer la fonction f telle que :

- pour tout x réel, f(x) + 4f'(x) = 0
- le point A(8;2) est un point de C

Question 5 ((1+2+2+1)+(2+4+3)=15) points)

- 1) Soit g la fonction définie sur]0; $+\infty[$ par $g(x)=x^2-3+3\ln x$.
 - a) Étudier les limites de g aux bornes du domaine de définition.
 - b) Étudier les variations de g sur $]0; +\infty[$.
 - c) Démontrer que l'équation g(x) = 0 admet une solution unique α sur $]0; +\infty[$, puis donner de α un encadrement d'amplitude 10^{-1} .
 - d) En déduire le signe de g sur $]0; +\infty[$.
- 2) Soit f la fonction définie sur]0; + ∞ [par $f(x) = x + 2 3 \frac{\ln x}{x}$.

 \mathbb{C}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

- a) Étudier les limites de *f* aux bornes du domaine de définition et préciser d'éventuelles asymptotes horizontales ou verticales.
- b) Démontrer que \mathcal{C}_f admet une asymptote oblique d en $+\infty$ dont on déterminera une équation, puis étudier la position relative de \mathcal{C}_f et de d.
- c) Démontrer que pour tout x de $]0; +\infty[$, $f'(x) = \frac{g(x)}{x^2}$ et dresser le tableau de variation de f sur $]0; +\infty[$.

Question 6 (8 points)

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = 2e^x + (x+2)e^{-x}$.

 \mathcal{C}_f est la courbe représentative de f dans un repère orthonormal $(O; \vec{i}; \vec{j})$.

Démontrer qu'il existe une seule tangente à \mathcal{C}_f de coefficient directeur 2.